Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin
نویسندگان
چکیده
Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane.
منابع مشابه
Exophilin-8 assembles secretory granules for exocytosis in the actin cortex via interaction with RIM-BP2 and myosin-VIIa
Exophilin-8 has been reported to play a role in anchoring secretory granules within the actin cortex, due to its direct binding activities to Rab27 on the granule membrane and to F-actin and its motor protein, myosin-Va. Here, we show that exophilin-8 accumulates granules in the cortical F-actin network not by direct interaction with myosin-Va, but by indirect interaction with a specific form o...
متن کاملThe Cortical Acto-Myosin Network: From Diffusion Barrier to Functional Gateway in the Transport of Neurosecretory Vesicles to the Plasma Membrane
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future the...
متن کاملMyosin VI is associated with secretory granules and is present in the nucleus in adrenal medulla chromaffin cells.
Myosin VI (MVI) is the only known myosin walking towards minus end of actin filaments. Here, MVI, but not myosins IB or IIB, was detected in chromaffin granules isolated from bovine medulla and found to be tightly associated with the granule apical surface. MVI also localized to secretory granules within rat pheochromocytoma PC12 cells as well as to the Golgi apparatus, endoplasmic reticulum an...
متن کاملMyosin 2 maintains an open exocytic fusion pore in secretory epithelial cells.
Many studies have implicated F-actin and myosin 2 in the control of regulated secretion. Most recently, evidence suggests a role for the microfilament network in regulating the postfusion events of vesicle dynamics. This is of potential importance as postfusion behavior can influence the loss of vesicle content and may provide a new target for drug therapy. We have investigated the role of myos...
متن کاملInvolvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis.
Rab27a is a GTPase associated with insulin-containing secretory granules of pancreatic beta-cells. Selective reduction of Rab27a expression by RNA interference did not alter granule distribution and basal secretion but impaired exocytosis triggered by insulin secretagogues. Screening for potential effectors of the GTPase revealed that the Rab27a-binding protein Slac2c/MyRIP is associated with s...
متن کامل